We find the total area of the flag
![A=\text{length}\cdot width=19\cdot10=190](https://img.qammunity.org/2023/formulas/mathematics/college/l3yx4r53m2pe37o2iwz7ribs1s9cdojn41.png)
Total area 190 ft^2
Next, we have 13 red and white stripes that have a height of 10/13 ft.
And 3 red stripes are 19 ft by 10/13 ft. So the area for a red stripe is:
![\begin{gathered} A=19\cdot(10)/(13)=(190)/(13)=14.61 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4hj8wkwdrz7b83ahdqhuwbg44hdmx57l2r.png)
Area a red stripe 14.61 ft^2
Also, we have 4 stripes that is (19 - 7 5/8)ft by 10/13 ft. Then, the area for a stripe is:
![A=(19-7(5)/(8))\cdot(10)/(13)=(19-(61)/(8))\cdot(10)/(13)=(91)/(8)\cdot(10)/(13)=(910)/(104)=8.75](https://img.qammunity.org/2023/formulas/mathematics/college/2isbug180ruqft6pbc7p654yzcja7reh6g.png)
Area red stripe 8.75 ft^2
Therefore, the total area of red color of the flag is
![A=3\cdot14.61+4\cdot8.75=43.83+35=78.83](https://img.qammunity.org/2023/formulas/mathematics/college/lsqu0jffr6h2n7dt2mbdi8ng96c0oi1aqc.png)
Area of the flag is red 78.83 ft^2
Finally, we find the percentage,
190 ---> 100%
78.83 --> x %
![\begin{gathered} x\cdot190=100\cdot78.83 \\ x\cdot(190)/(190)=(100\cdot78.83)/(190) \\ x=(7883)/(190)=41.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9en3y68wyyzbejvnmkwf2k40vj9viw79j0.png)
Answer: percentage of the flag is red 41.5%