Remember the following transformation rules for functions:
Vertical translation up c units:
![f(x)\rightarrow f(x)+c](https://img.qammunity.org/2023/formulas/mathematics/college/phqnkde8eicpxrw8omvmxpq273fz6egj8o.png)
Vertical translation down c units:
![f(x)\rightarrow f(x)-c](https://img.qammunity.org/2023/formulas/mathematics/college/umbzebednsrbbc4upu6fh58w00w5fcli5y.png)
Horizontal translation left c units:
![f(x)\rightarrow f(x+c)](https://img.qammunity.org/2023/formulas/mathematics/high-school/u6b07ngocr5ieyt8e7puruf17ao3opb1gu.png)
Horizontal translation right c units:
![f(x)\rightarrow f(x-c)](https://img.qammunity.org/2023/formulas/mathematics/college/k0evccrq96elumgwvv9yrustm23ltw1hhp.png)
If the given function, f(x)=|x| must be shifted down 3 units and to the right 1 unit, then, substract 3 from the function and substract 1 from the argument of the function.
First, perform a vertical translation down 3 units:
![|x|\rightarrow|x|-3](https://img.qammunity.org/2023/formulas/mathematics/college/denwc9dqym2oko7pjtfxjogxyfk74ik12e.png)
Next, perform a horizontal translation right 1 unit:
![|x|-3\rightarrow|x-1|-3](https://img.qammunity.org/2023/formulas/mathematics/college/jhqwv1usgcar4tvodr5ngw32v8afxnjnl1.png)
Therefore, the new equation is:
![f(x)=|x-1|-3](https://img.qammunity.org/2023/formulas/mathematics/college/q80h1sns8ycupo80e2xhgwnfrfpenf38eq.png)