Given:
a.) Terri swam 3 laps in 2.5 minutes.
To be able to determine how long would it take her to swim 20 laps, we will be using ratio and proportions.
![\text{ 3 laps : 2.5 minutes = 20 laps : x}](https://img.qammunity.org/2023/formulas/mathematics/college/5e7ontdrffe3opotqtutacaeiqsd32o99c.png)
Where,
x = time to swim 20 laps
We get,
![\text{ 3 laps : 2.5 minutes = 20 laps : x}](https://img.qammunity.org/2023/formulas/mathematics/college/5e7ontdrffe3opotqtutacaeiqsd32o99c.png)
![\text{ }\frac{\text{ 3 laps}}{\text{ 2.5 mins.}}=\text{ }\frac{\text{ 20 laps}}{\text{ x}}\text{ }\rightarrow\text{ }\frac{\text{ 3}}{\text{ 2.5}}\text{ = }\frac{\text{ 20}}{\text{ x}}](https://img.qammunity.org/2023/formulas/mathematics/college/qcfbfktz6u4yeq7rdrctk4lnuk9w6pb42y.png)
![\text{ (3)(x) = (20)}(2.5)](https://img.qammunity.org/2023/formulas/mathematics/college/8jmnwojfb53r5s93s69kohovfgzs1o31mu.png)
![\text{ 3x = 50}](https://img.qammunity.org/2023/formulas/mathematics/college/eo8p1sg2e026kn4wvdwz1m21mdyy82fhhw.png)
![\text{ }\frac{\text{3x}}{3}\text{ = }\frac{\text{50}}{3}](https://img.qammunity.org/2023/formulas/mathematics/college/aibjm8f95rcii0rj1w3n0sd2dxmyu37roo.png)
![\text{ x = 16.6666}\ldots\text{ }\approx\text{ 16.67 or 16 }(2)/(3)\text{ minutes}](https://img.qammunity.org/2023/formulas/mathematics/college/j7pzab36h2jpreu5fn7sq2z6h90ievxt04.png)
Therefore, Terri will take 16.67 or 16 2/3 minutes to swim 20 laps/