Given:
![y=f(t)=31(1.02)^t](https://img.qammunity.org/2023/formulas/mathematics/college/yhaw7gyxctjfddml6huce4ftzhko5dijcz.png)
A) We are to write the exponential function in the form
![y=ae^(kt)](https://img.qammunity.org/2023/formulas/mathematics/college/45d9xhoudot50eyq1vmz8bvtwyz2sutahx.png)
When t = 1
![f(1)=31(1.02)^1=31(1.02)](https://img.qammunity.org/2023/formulas/mathematics/college/s7fqf210xgai765pnkfji4no9yewj513d5.png)
Also,
![f(1)=ae^(k(1))=ae^k](https://img.qammunity.org/2023/formulas/mathematics/college/4ddp6dg2o594x3w9qhoxz1nr0ari5jpv77.png)
Equating the two equations and solving for k
![\begin{gathered} 31(1.02)=ae^k \\ \therefore a=31 \\ We\text{ then have,} \\ 1.02=e^k \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/94aalm7o5j7z17ezui8yl5ltumdik8sr69.png)
Apply exponent rules:
![\begin{gathered} k=\ln \mleft(1.02\mright)=0.01980\approx0.0198(4\text{ decimal places)} \\ \therefore k=0.0198 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a3lhhpub86nlnxrp37yfx3bss318or4cdk.png)
B) The annual growth rate is,
![\begin{gathered} y=ab^x \\ \text{where,} \\ b=1+r=1.02 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/iqjfur0nqycfagscfzye7xbsbab87o4q70.png)
Equating the two expressions together and solving for r
![\begin{gathered} 1+r=1+0.02 \\ r=1+0.02-1=1-1+0.02=0.02=2\% \\ \therefore r=2\% \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ar7ui2g4yq0tu4gvitxhtr37p7iiid6vwd.png)
Hence, the annual growth rate is 2% per year.
C) The continuous growth rate is the constant k which is
![\begin{gathered} k=0.0198=1.98\% \\ \therefore k=1.98\% \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e3yd06ldhw8z9zj4mlzg5xk26ay0r4okhl.png)
Hence, the continuous growth rate is 1.98% per year.