61.6k views
2 votes
What is the product of the polynomials below? (8x2 - 4x-8)(2X2 +3x+2)

What is the product of the polynomials below? (8x2 - 4x-8)(2X2 +3x+2)-example-1
User Edebill
by
4.1k points

1 Answer

3 votes

Answer: 16x^4 + 16x^3 - 12x^2 - 32x - 16

Step-by-step explanation:

Given the following polynomial equation


\begin{gathered} (8x^2\text{ - 4x - 8) }\cdot(2x^2\text{ + 3x + 2)} \\ \text{Step 1: Open the parentheses using FOIL} \\ 8x^2\cdot2x^2+8x^2\cdot3x+8x^2\cdot2\text{ - 4x }\cdot2x^2\text{ -4x }\cdot\text{ 3x - 4x}\cdot2\text{ -8 }\cdot2x^2\text{ -8 }\cdot\text{ 3x -8}\cdot2 \\ 16x^4+24x^3+16x^2-8x^3-12x^2-8x-16x^2\text{ - 24x - 16} \\ \text{Collect the like terms} \\ 16x^4+24x^3-8x^3+16x^2-16x^2-12x^2\text{ - 8x - 24x - 16} \\ 16x^4+16x^3-12x^2\text{ - 32x - 16} \end{gathered}

Therefore, the answer is 16x^4 + 16x^3 - 12x^2 - 32x - 16

User Bo Borgerson
by
4.5k points