Answer:
![r=-0.985](https://img.qammunity.org/2023/formulas/mathematics/high-school/btnpdv6g3j26b6uaaw75m7rdk35h58h0ox.png)
Explanation:
The Pearson correlation coefficient measures the strength of a linear association between two variables, where the value r=1 means a positive correlation and -1 a negative correlation.
It is represented by the equation:
![\begin{gathered} r=\frac{\Sigma(x_i-\bar{x})(y_i-\bar{y})}{\sqrt[]{\Sigma(x_i-\bar{x})^2}\sqrt[]{\Sigma(y_i-\bar{y)^2}}^{}} \\ \text{where,} \\ x_i=x\text{ values} \\ y_i=y\text{ values} \\ \bar{x}=\operatorname{mean}\text{ of x values} \\ \bar{y}=\operatorname{mean}\text{ of y values} \\ (x_i-\bar{x})(y_i-\bar{y})=\text{ deviation scores} \\ (x_i-\bar{x})^2\text{ and }(y_i-\bar{y)^2}=\text{ deviation squared} \end{gathered}]()
Then, find all the corresponding values and operate to find the correlation coefficient:
![\begin{gathered} X\text{ values} \\ \Sigma=56 \\ \text{ Mean=11.2} \\ \Sigma(x-\bar{x})^2=132.8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/chlozs06k89qx6u3o5sj073k4igwudvw2f.png)
![\begin{gathered} Y\text{ values} \\ \Sigma=71 \\ \text{Mean}=14.2 \\ \Sigma(y-\bar{y})^2=90.8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/tug51ucsdh00dt7ylwrci6h23bs0lhcm93.png)
![\begin{gathered} X\text{ and Y combined} \\ N=5 \\ \Sigma(x-\bar{x})(y-\bar{y})=-108.2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/5lnz21zu6g1wz09u1wczii34wyk5e2sqy6.png)
Now, using the formula for the coefficient:
![\begin{gathered} r=\frac{-108.2}{\sqrt[]{(132.8)(90.8)}} \\ r=-0.985 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jx6vxj4iqefvt0fffqmh67yqx15w0sekj0.png)