Given that there is a pair of six-sided dice, let be the probability to obtain a 5 in the first dice:
![P_1](https://img.qammunity.org/2023/formulas/chemistry/high-school/mesmf8mdy7766xi3u471sfguo5dvrzkvrm.png)
And let be the probability to obtain a 5 in the second dice:
![P_2](https://img.qammunity.org/2023/formulas/physics/college/kd2j8lflcnav0jdo9yetuvxcv6z696b71z.png)
Then, the probability to obtain a 5 in one of the two dices will be equal to:
![P=P_1\cup P_2](https://img.qammunity.org/2023/formulas/mathematics/college/p2z7bmimf87ukmtpplt01zld363enrfsxd.png)
Therefore:
![P=P_1+P_2](https://img.qammunity.org/2023/formulas/mathematics/college/2o752gn9wgbogyitrvkvmayo8qs5t9p3f5.png)
The dice has 6 sides, hence the probability that a 5 appears for each dice is:
![(1)/(6)](https://img.qammunity.org/2023/formulas/mathematics/high-school/s2sdjtchslkb90he84q1tkyhaenfcyiyvp.png)
Therefore:
![P=(1)/(6)+(1)/(6)](https://img.qammunity.org/2023/formulas/mathematics/college/oo7jmv640ixi9wg6ocxoz3wwgr96logfsl.png)
Adding the fractions, you get:
![\begin{gathered} P=(2)/(6) \\ \\ P=(1)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qprxhdnk831ab2wbw9pfi8phuc5bisnfjl.png)
Hence, the answer is:
![P=(1)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/cr2c0wdun2sadhb2n623nslig1f26gkx8f.png)