Solution:
Let x be the number of nickels and y be the number of dimes in Carolyn's purse.
There is $3.25 in her purse in nickes and dimes. T
Recall that;
![\begin{gathered} 1\text{ dime}=\text{ \$}0.1 \\ \\ 1\text{ nickel }=\text{ \$}0.05 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uznwmhejtus7hvpetmyt8tuaa3wfnh0wou.png)
Thus;
![0.05x+0.1y=3.25..........equation1](https://img.qammunity.org/2023/formulas/mathematics/college/nno7fruuh272hljqmbm9oobj5gtzs9na4u.png)
Also, the number of nickels is five less than three times the number of dimes. Thus;
![x=3y-5...........equation2](https://img.qammunity.org/2023/formulas/mathematics/college/zwzzin1o8x2n5sv91xrp25zaivqvnanjnc.png)
Substitute equation2 in equation1;
![\begin{gathered} 0.05(3y-5)+0.1y=3.25 \\ \\ 0.15y-0.25+0.1y=3.25 \\ \\ 0.25y=3.25+0.25 \\ \\ y=(3.5)/(0.25) \\ \\ y=14 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/k2vzr9zw7x632nhti51k7uwgnuhztba663.png)
Substitute the value of y in equation2;
![\begin{gathered} x=3(14)-5 \\ \\ x=37 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a7aszrnj3163qpwvzalyaf1uolp85t5fi8.png)
Hence, there are 37 nickels and 14 dimes in Carolyn's purse.