94.9k views
1 vote
Convert 0.45 (5 is a repeating number) to a fraction

User Cornish
by
3.4k points

1 Answer

4 votes

Let the given number be 'x',


\begin{gathered} x=0.4\bar{5} \\ x=0.45555555\ldots\ldots \end{gathered}

Multiply both sides by 10,


\begin{gathered} 10x=4.\bar{5} \\ 10x=4.5555555\ldots\ldots \end{gathered}

Subtract the equations,


\begin{gathered} 10x-x=4.5555\ldots-0.45555\ldots \\ 9x=4.5+0.0\bar{5}-(0.4+0.0\bar{5}) \\ 9x=4.5+0.0\bar{5}-0.4-0.0\bar{5} \\ 9x=4.1 \\ 9x=(41)/(10) \\ x=(41)/(90) \end{gathered}

Thus, the recurring decimal number is equivalent to the fraction,


0.4\bar{5}=(41)/(90)

User Stefani
by
3.2k points