Using the degree approach;
![\pi=180^o](https://img.qammunity.org/2023/formulas/mathematics/college/dck2ul2k07as5cvpe0xaz8novxmec5h67c.png)
Then;
![\begin{gathered} \sin 7((\pi)/(6))=\sin 210^o \\ \sin 7((\pi)/(6))=-(1)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/546f7oprn6d1dffic86kmxqxsbf3g7vhfo.png)
That is, the opposite is -1, and the hypotenuse is 2.
Also, following the image below;
Recall that;
![\begin{gathered} \sin \theta=(opposite)/(hypotenuse) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uvykrg9m6yacseu7m4z6lv7onjgxrjrx02.png)
The opposite side is the side facing the angle, and the side facing angle 30 is -1. Then the third side is the adjacent.
![\sin 7((\pi)/(6))=-(1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/m6ofmkt1fepoirt9j5ui18go1x3lyfpobw.png)