![1.435\cdot10^3\operatorname{mm}]()
Step-by-step explanation
reasonable measurement of the distance between the tracks on a railroad
Step 1
convert the notation of the numbers
![\begin{gathered} 1.435\cdot10^(-3) \\ to\text{ find the result do:} \\ a)\text{put 4 ceros to the left of the number,it is} \\ 00001.435 \\ b)\text{move the dot the number of times = exponent of 10} \\ \text{ if the exponent is positive , then move the dot to the rigth} \\ \text{ if the exponent is negative, then move the dot to the left} \\ \text{the exponent is (-3), then we have to move the dot 3 spaces to the left} \\ 0.001432 \\ \text{Hence} \\ 1.435\cdot10^(-3)mm=0.001432\text{ mm} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mx80yyi7zepllhjffnypxm3kudwzcjq55p.png)
0.001432mm is a very small measure for the distance between the tracks of a railroad,then we can discard it
Step 2
convert from scientific notation
![\begin{gathered} 1.435\cdot10^{3\text{ }}\operatorname{mm} \\ \text{according to the rule, the dot must be moved 3 spaces to the rigth,then} \\ 1.435\cdot10^3=1435\text{ mm} \end{gathered}]()
1435 mm is a more reasonable measure for the distance between the tracks on a railroad, then the answer is
![1.435\cdot10^3\operatorname{mm}]()