168k views
0 votes
Check all that apply. If seco = 12then: I A. sing = 12 13 12 O B. COSg = 二 13 O C. CSCO = 12 13 D. tang 5 12 SU

User DanielBK
by
3.7k points

1 Answer

3 votes

Solution

For this case we have the following expression:


\sec \theta=(1)/(\cos \theta)=(13)/(12)

Then solving for cos we got:


\cos \theta=(12)/(13)

We can find sin with this:


\sin \theta=\sqrt[]{1-((12)/(13))^2}=(5)/(13)

If we find tan theta we got:


\tan \theta=(\sin \theta)/(\cos \theta)=((5)/(13))/((12)/(13))=(5)/(12)

and cosecant is:


\text{csc}\theta=(1)/(\sin \theta)=(1)/((5)/(13))=(13)/(5)

Then the correct answer is:

B and D

User Steakpi
by
4.2k points