the current yearly rate of increase is 2.5%
The population 10 years from now is 1920 (to the nearest whole number)
Step-by-step explanation:
The population two years ago = 1500 (initial value)
The present population (2 years after) = 1576
We can find the rate of increase using the information above:
Two points (0, 1500) and (2, 1576)
![\begin{gathered} \text{slope = }(1576-1500)/(2-0) \\ \text{slope = 76/2} \\ \text{slope = 38} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5uk598ewyythfltav6ds29rxlnrtmx71wz.png)
![\begin{gathered} \text{The yearly rate of increase = }\frac{rate}{in\text{itial population}} \\ \text{The yearly rate of increase = }(38)/(1500) \\ \text{The yearly rate of increase = }0.025\text{ = 2.5\%} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7k4fswiiaj1ang185am5du1t4cd5xl5e4g.png)
![\begin{gathered} U\sin g\text{ exponential function:} \\ y=a(1+r)^t\text{ (since the population is increasing)} \\ a\text{ = initial value} \\ r\text{= rate of increase per year = 2.5\%} \\ t\text{ = time} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4zy45yi3o1ny9nhc0p7gd5133fqif8fdvn.png)
![\begin{gathered} a\text{ = 1500} \\ r\text{ = 2.5\% = 0.025} \\ t\text{ = 10 years} \\ y\text{ = 1500(1+}0.025)^(10) \\ y=1500(1.025)^(10) \\ y\text{ = }1920.13 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5js1j0scw6p7b3vnzqvj2f522o179f8k0l.png)
Hence, the current yearly rate of increase is 2.5%
The population 10 years from now is 1920 (to the nearest whole number)