The vertices of the given figure are:
![C(-7,-7),D(-2,-7),E(-2,-5),F(-7,-5)](https://img.qammunity.org/2023/formulas/mathematics/high-school/eoep3dcz1qwkuqyqzrjxharh7dw73lo2j4.png)
Recall that the coordinate rule for 270⁰ clockwise rotation around the origin is:
![(x,y)\rightarrow(-y,x))](https://img.qammunity.org/2023/formulas/mathematics/high-school/ijis14r3t34v2m1dlu4m5c62i41wy8acfn.png)
Apply this rule to the first vertex C(-7,-7):
![\begin{gathered} C(-7,-7)\rightarrow C^(\prime)(-(-7),-7) \\ \Rightarrow C^(\prime)=(7,-7) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/upgxixc51pfn1bfc2e5mk5jx8nmw8lwp12.png)
Apply the same rule to other vertices to get:
![\begin{gathered} D^(\prime)(7,-2) \\ E^(\prime)(5,-2) \\ F^(\prime)(5,-7) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/y0b6aa8n5zzv9u1euqo8yptw5r8p30x2rr.png)
Answer:
C'=(7,-7)
D'=(7,-2)
E'=(5,-2)
F'=(5,-7)