445,495 views
17 votes
17 votes
Condense into a single logarithm and simplify:

2\log _(10)x+\log _(10)5

User Defhlt
by
3.1k points

1 Answer

8 votes
8 votes

Answer:


2\, \log_(10)(x) + \log_(10)(5) = \log_(10)(5\, x^(2)).

Explanation:

For any given base
b > 0,
x > 0, and
y > 0:


\log_(b)(x) + \log_(b)(y) = \log_(b)(x\, y).

For all real
y (including both
y > 0 and
y \le 0,) as long as
b > 0,
x > 0:


y\, \log_(b)(x) = \log_(b)(x^(y)).

Apply the second rule to rewrite
2\, \log_(10)(x):


\begin{aligned}2\, \log_(10)(x) &= \log_(10)(x^(2))\end{aligned}.

Apply the first rule:


\begin{aligned}\log_(10)(x^(2)) + \log_(10)(5) = \log_(10)(5\, x^(2))\end{aligned}.

Overall:


\begin{aligned}& 2\, \log_(10)(x) + \log_(10)(5)\\ =\; & \log_(10)(x^(2)) + \log_(10)(5) \\ =\; & \log_(10)(5\, x^(2))\end{aligned}.

User Qvpham
by
3.0k points