The domain of a function is all the x values that x can take.
We have the next function:
![f(x)=(x-3)/(x^2+9x-22)](https://img.qammunity.org/2023/formulas/mathematics/college/m1wprvtn7whsld17vkzsc8gl0do8e95xe8.png)
Now, we need to find when the denominator is undefined.
The denominator can be 0.
So equal the whole expression to 0.
Therefore:
![x^2+9x-22=0](https://img.qammunity.org/2023/formulas/mathematics/college/hlxcl6nwlg6gr9t7p0es2d3ooyp86o1kwl.png)
To find the x value, use the quadratic formula, which is given by:
![x=\frac{-b\pm\sqrt[2]{b^2-4ac}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/college/vecqv42h8re9tvnbp43529x5x01l9ve2cf.png)
Replace this values using a=1, b=9 and c= -22
![x=\frac{-9\pm\sqrt[]{9^2-4(1)(-22)}}{2(1)}](https://img.qammunity.org/2023/formulas/mathematics/college/f6yu1o0f7651socgidip2qn8abcg7ka7vd.png)
![x=(9\pm13)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/yk3uigeokhzlniwywr2r8on58b0ewpbi4u.png)
Then x will take two values:
![x_1=(-9-13)/(2)=(-22)/(2)=-11_{}](https://img.qammunity.org/2023/formulas/mathematics/college/6nyom7gr1n09iwk0d8r8w15wn6rd3xf8pt.png)
![x_2=(-9+13)/(2)=(4)/(2)=-2_{}](https://img.qammunity.org/2023/formulas/mathematics/college/dqgqmvh13x7dw4ux732mwc6wkw386dfz05.png)
So, when x= -11 and x=2, the function is undefined.
Finally, we can find the domain: (-inf, -11) U (-11,2) U (2, inf)