Question: Find the distance between the points (4, 4) and (1,8).
Solution:
Remember that the distance formula is given by:
![d\text{ = }\sqrt[]{(X2_{}-X1_{}\text{ }_{})^2\text{ + }(Y2_{}-Y1_{}\text{ }_{})^2\text{ }}](https://img.qammunity.org/2023/formulas/mathematics/college/7fx5thdye8wagwiininlgcv8pyit6d1gcx.png)
In our case, we have that
(X1, Y1) = (4,4)
(X2,Y2) = (1,8)
Replacing these values in the distance formula we obtain:
![d\text{ = }\sqrt[]{(1-4_{}\text{ }_{})^2\text{ + }(8-4\text{ }_{})^2\text{ }}\text{ = }\sqrt[]{(-3\text{ }_{})^2\text{ + }(4_{})^2\text{ }}\text{ =}\sqrt[]{(3\text{ }_{})^2\text{ + }(4_{})^2\text{ }}\text{ }](https://img.qammunity.org/2023/formulas/mathematics/college/4i3ukhr37w51pk6dnu74z3ov6nwgdunsra.png)
that is:
![d\text{ = }\sqrt[]{(3\text{ }_{})^2\text{ + }(4_{})^2\text{ }}=\sqrt[]{9\text{ + 16}^{}\text{ }}\text{ }=\sqrt[]{25\text{ }}\text{ = 5}](https://img.qammunity.org/2023/formulas/mathematics/college/scri59yct9hpqp981lpnvuiboccl0vefqu.png)
then, we can conclude that the distance between the points (4,4) and (1,8) is 5.