Step 1
Write the system of equations required to solve the problem
![\begin{gathered} 0.4x+0.25y=0.3(5.25)----(1) \\ x+y=5.25_{}---(2) \\ \text{where ;} \\ x\text{ represents the 40}\%\text{ gloss gallon} \\ y\text{ represents the 25}\%\text{ gloss gallon} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lq3d2e3lzqnkru89pqj20gem2y0porfgcq.png)
Step 2
Find the value of x using the substitution method
Find the value of y from equation 2
![\begin{gathered} x+y=5.25 \\ y=5.25-x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/93f2s5h1m8b8zudc9i9hlqxo6rwi28bfi5.png)
Substitute for y as seen above in equation 1
![\begin{gathered} 0.4x+0.25y=0.3(5.25) \\ 0.4x+0.25(5.25-x)=1.575_{} \\ 0.4x+1.3125-0.25x=1.575 \\ 0.4x-0.25x=1.575-1.3125 \\ 0.15x=0.2625 \\ (0.15x)/(0.15)=(0.2625)/(0.15) \\ x=1.75\text{ or }(7)/(4)\text{ or 1}(3)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x7a0i9f7iweq4fi9wbmuishdpzppj27t93.png)
Step 3
Find the value of y by substituting for x in equation 2
![\begin{gathered} x+y=5.25_{} \\ 1.75+y=5.25 \\ y=5.25-1.75 \\ y=(7)/(2)or\text{ 3.5 or 3}(1)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ps4txa77pmad6bm7cgyj8tg691bjwkxc3b.png)
Therefore,
![\text{There are 1}\frac{3}{4\text{ }}\text{ gallons of 40\% gloss and 3}(1)/(2)\text{ gallons of 25\% gloss}](https://img.qammunity.org/2023/formulas/mathematics/college/2bqsn9mhp62tvnira92v2vsiajgoq1d74d.png)
The answer is, therefore, option C