The standard deviation of a sample portion is
![\sigma_{\hat{p}}=\sqrt[]{(pq)/(n)}](https://img.qammunity.org/2023/formulas/mathematics/college/v0bbeymyodnjx2xsu8btvjls482l84krg1.png)
Where p = 45 and q = 1 - p.

Let's find the standard deviation of the sample n = 75.
![\sigma_{\hat{p}}=\sqrt[]{(0.45\cdot0.55)/(75)}\approx0.057](https://img.qammunity.org/2023/formulas/mathematics/college/k48ol1bhzs5ld40qngb9qyrnyv1mpybcff.png)
The standard deviation of the first sample is 0.057.
Repeat the process for n = 1500.
![\sigma_{\hat{p}}=\sqrt[]{(0.45\cdot0.55)/(1500)}\approx0.0128](https://img.qammunity.org/2023/formulas/mathematics/college/74ylntyfw3cw1j2oii5ndak3o1ypasn4h9.png)
The standard deviation of the second sample is 0.0128.
Therefore,
• When n = 75, the standard deviation is 0.057.
,
• When n = 1500, the standard deviation is 0.0128.