Given that the manufacturer recommends storing the batteries at temperatures ranging from -20 degrees celsius to 45 degrees celsius, you can identify that the minimum temperature they can be stored is:
![-20\text{ \degree}C](https://img.qammunity.org/2023/formulas/mathematics/college/msn0bnffi7c483sfek3alo0xol2rha85vc.png)
And the maximum temperature they can be stored is:
![45\text{ \degree}C](https://img.qammunity.org/2023/formulas/mathematics/college/gbhh7osjk9xtx5zmv6i6cq2jfefnioag3j.png)
Let be "T" the temperature (in degrees Fahrenheit) at which the batteries can be stored.
You need to convert the minimum and maximum temperature from Degrees Celsius to Degrees Fahrenheit using this formula:
![D.\text{ }Fahrenheit=(D.\text{ }Celsius\cdot(9)/(5))+32](https://img.qammunity.org/2023/formulas/mathematics/college/6ipf28x4xpmmimnxdan39k3k4u271wr4rc.png)
Then, you get:
![D.\text{ }Fahrenheit=(-20\cdot(9)/(5))+32=-4](https://img.qammunity.org/2023/formulas/mathematics/college/8mg6jaj7gh540ybswf76jpd7khnej2o9ju.png)
![D.\text{ }Fahrenheit=(45\cdot(9)/(5))+32=113](https://img.qammunity.org/2023/formulas/mathematics/college/5puqovwdagffnycxn5mos4wh6n89l6u75t.png)
Therefore, you can write the following inequality to represents describe "T":
![-4\leq T\leq113](https://img.qammunity.org/2023/formulas/mathematics/college/hoymlxz6jduyq8dtdmicv8uabb9swd9rfp.png)
Hence, the answer is:
![-4\leq T\leq113](https://img.qammunity.org/2023/formulas/mathematics/college/hoymlxz6jduyq8dtdmicv8uabb9swd9rfp.png)