Solution:
The amount earned after a particular period of time at an interest rate is expressed as
![\begin{gathered} A=P(1+rt)\text{ ---- equation 1} \\ where \\ A\Rightarrow amount\text{ earned} \\ P\Rightarrow amount\text{ invested} \\ r\Rightarrow interest\text{ rate} \\ t\Rightarrow time \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z19qwzo44ecg746d6uy9mb17zykvfnkvcx.png)
Also,
![\begin{gathered} A=P+I\text{ --- equation 2} \\ where \\ I\Rightarrow interest\text{ earned} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dwsot06t1tswgzb758p1lq40tluyqkv21g.png)
Given that $549 interest was earned in 8 years at an interest rate of 9%, this implies that
![\begin{gathered} I=549 \\ t=8 \\ r=9\%=0.09 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sjglwikdxgvls1oe5a4og76pj7yjuytqmd.png)
Substituting these values into equations 1 and 2, we have
![\begin{gathered} A=P(1+(0.09*8)) \\ \Rightarrow A=1.72P\text{ ---- equation 3} \\ A=P+549\text{ -----equation 4} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ouv6yeunmvb4yusa2qxurc7a2keblkzyfe.png)