Given the expression:
![(\tan(-(2\pi)/(3)))/(\sin((7\pi)/(4)))-\sec (-\pi)](https://img.qammunity.org/2023/formulas/mathematics/college/cw860x7irmvk46per8zq97xl2lxdamoxkv.png)
Let's find the exact value of the expression.
• First rewrite tan(-2π/3) in terms of sines and cosines.
We have:
![((\sin(-(2\pi)/(3)))/(\cos(-(2\pi)/(3))))/(\sin((7\pi)/(4)))-\sec (-\pi)](https://img.qammunity.org/2023/formulas/mathematics/college/v7m5lkodkmhgv16v4mo52frz2lyxytxhb6.png)
• Now, rewrite in product form:
![\begin{gathered} (\sin(-(2\pi)/(3)))/(\cos(-(2\pi)/(3))*\sin((7\pi)/(4)))-\sec (-\pi) \\ \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rtx4r60iotal1ihsap02j022pqspcch3tu.png)
Apply the reference angles by finding the angle suing the equivalent trigonomteric values.
We have:
![\begin{gathered} (\sin((4\pi)/(3)))/(\cos((4\pi)/(3))(-\sin((\pi)/(4)))-\sec (-\pi) \\ \\ (-\sin((\pi)/(3)))/(-\cos((\pi)/(3))(-(\sin\pi)/(4)))-\sec (-\pi) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/b19627mw18vaykpsioo9puw69czuesi2fe.png)
Substitute each trig value with the exact value:
![\begin{gathered} \frac{-\frac{\sqrt[]{3}}{2}}{-(1)/(2)*(-1\frac{\sqrt[]{2}}{2})}-\sec (-\pi) \\ \\ \frac{-\frac{\sqrt[]{3}}{2}}{-((-1)/(2)*\frac{\sqrt[]{2}}{2})_{}}-\sec (-\pi) \\ \\ \frac{-\frac{\sqrt[]{3}}{2}}{-(-\frac{\sqrt[]{2}}{4})}--\sec (0) \\ \\ \frac{-\sqrt[]{3}*4}{2*\sqrt[]{2}}--\sec (0) \\ \\ \frac{-2\sqrt[]{3}}{\sqrt[]{2}}--\sec (0) \\ \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wm8pfccewtxqc3orjcesydpb7jbkdhvf5m.png)
Rationalize the denominator:
![\begin{gathered} \frac{-2\sqrt[]{3}}{\sqrt[]{2}}*\frac{\sqrt[]{2}}{\sqrt[]{2}}+\sec (0) \\ \\ -\sqrt[]{3*2}+\sec (0) \\ \\ -\sqrt[]{6}+\sec (0) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/q5ef7c55zf8emqrx0jh91s7hsxegddfag9.png)
Where:
sec(0) = 1
![\begin{gathered} -\sqrt[]{6}+1 \\ \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x6upfp33vzd6gb0k9eji35lrcclkwmwnn9.png)
ANSWER:
![\begin{gathered} \\ -\text{ }\sqrt[]{6}+1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9spkehp3sm4r17368uwft8kw0eylev83sh.png)