Given,
The length of the pipe, L=45.132 cm=0.45132 m
The speed of the sound is v=343 m/s
The frequency of the 1 st harmonic is given by,
![f_1=(v)/(2L)](https://img.qammunity.org/2023/formulas/physics/college/84lqp7er73h5gjx09w85nrr20bfkmt11ll.png)
On substituting the known values,
![\begin{gathered} f_1=(343)/(2*0.45132) \\ =378\text{ Hz} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/kq2ukke24jes5rt0ec7s1zj49naa6nxjrh.png)
The frequency of the second harmonic is given by,
![f_2=2f_1](https://img.qammunity.org/2023/formulas/physics/college/j53gudyw8b2qunyweq0a41ik1exhuqhh2y.png)
On substituting the known values,
![\begin{gathered} f_2=2*378 \\ =756\text{ Hz} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/pk9mepsjxh2v2p0u3vme7ygn6arecjxedz.png)
The frequency of the third harmonic is given by,
![f_3=3f_1](https://img.qammunity.org/2023/formulas/physics/college/odi05jlu346z0m3m8i1dj95h407tbsxzs3.png)
On substituting the known values,
![\begin{gathered} f_3=3*378 \\ =1134\text{ Hz} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/6qg3cai210inwkblf491n23g5qxl9ue8z6.png)
Therefore the frequency of 1st harmonic is 378 Hz.
The frequency of the 2nd harmonic is 765 Hz
The frequency of the 3rd harmonic is 1134 Hz