Let's represent the cherry pies and apple pies with variables
![\begin{gathered} \text{cherry pies=x} \\ \text{apple pies=y} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bprn6u719xwb8cjedf3r2b3hqfdcys8i2m.png)
The equation of julio's sales will be
![\begin{gathered} 3* x+14* y=\text{ \$300} \\ 3x+14y=\text{ \$300 }\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots.(Eqn\text{ 1)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6zbk1eigiv9rwayd7ks4zkrrh0yxz74r7n.png)
The equation of Jisel's sales will be
![\begin{gathered} 3* x+9* y=\text{ \$210} \\ 3x+9y=\text{ \$210}\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots..(Eqn\text{ 2)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vgs5wtiox60cb5716m22tumnasm3q52ql5.png)
Let's combine Equations (1 )and (2 )and solve them simultaneously
![\begin{gathered} 3x+14y=\text{ \$300}\ldots\ldots\ldots\ldots\ldots\text{.}(\text{Eqn 1)} \\ 3x+9y=\text{ \$210}\ldots\ldots\ldots\ldots\ldots.(Eqn\text{ 2)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2wgzrxur0o6yfv87um5kj3jwg2jlr6bxx3.png)
Subtract Eqn (2) from Eqn (1) we will have
![\begin{gathered} 3x+14y-(3x+9y)=\text{ \$300- \$210} \\ 3x+14y-3x-9y=\text{ \$90} \\ 3x-3x+14y-9y\text{ =\$90} \\ 5y=\text{ \$90} \\ (5y)/(5)=\text{ }(90)/(5) \\ y=\text{ \$18} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/10e811kdhz3o6ogqp9ajw5xyi44m5xzhef.png)
Substitute y= $18 in Eqn 1 we will have
![\begin{gathered} 3x+14y=\text{ \$300} \\ 3x+14(\text{ \$18)= \$300} \\ 3x+\text{ \$252= \$300} \\ 3x=\text{ \$300- \$252} \\ 3x=\text{ \$48} \\ (3x)/(3)=(48)/(3) \\ x=\text{ \$16} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tc0ltpqa1vdrh9ln5c6fgw3ekp7vblatql.png)
Therefore,
The equation for Julio's sales is 3x+14y= $300
The equation for Jisel's sales is 3x+9y= $210
The cost of one cherry pie is x= $16
The cost of one apple pie is y= $18