Recall the inverse proportionality relationship: If m is inversely proportional to n, then the relationship is:
![m\propto(1)/(n)](https://img.qammunity.org/2023/formulas/mathematics/college/y0csk2cqs3zptnpzr49w1wryos06arwugh.png)
Substitute y and √x for m and n respectively in the relationship:
![y\propto(1)/(√(x))](https://img.qammunity.org/2023/formulas/mathematics/college/syrdewo9de59pztnakktlvawjl6qb3hjg6.png)
Applying a constant of proportionality, k, the relationship becomes:
![\begin{gathered} y=(k)/(√(x)) \\ \therefore \\ k=y√(x) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6kbwbr6n64vtv0ttzckhkmv5dth4lfudrp.png)
The question gives the following values for x and y:
![y=7,x=49](https://img.qammunity.org/2023/formulas/mathematics/college/dphm1aacgpas39cf57tmgz9nghbgfea1mu.png)
Substituting these into the equation for k, the value of k can be gotten to be:
![\begin{gathered} k=7*√(49)=7*7 \\ k=49 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ep4i7ms2eh0al4d1thwpaihtcansdvqa1p.png)
The constant of proportionality is 49.
The correct answer is FALSE.