The expressi
![y=x^2-1](https://img.qammunity.org/2023/formulas/mathematics/college/o4z8z1j2azhw0llzawtehx3o3o46udwvng.png)
and we would like to know the domain and range of the function. Since for every x value we give to the equation the result will always be a real number the domain of this function is
![\text{dom y=(-}\infty,\infty)](https://img.qammunity.org/2023/formulas/mathematics/college/mh25u0oyjmsmjksdzpadscq7djomn2ua99.png)
Now to find the range of the function we solve the equation for x.
![\begin{gathered} y=x^2-1 \\ x^2=y+1 \\ x=\pm\sqrt[]{y+1} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6uotuvdbqt2xibwl4yiqccc7oxqq5tquht.png)
This root will only exist if
![\begin{gathered} y+1\ge0 \\ y\ge-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7bwfyk98tbp2ysk1wbg86b10w21vs0gcj5.png)
Therefore the range of the function is:
![\text{range y=}\lbrack-1,\infty)](https://img.qammunity.org/2023/formulas/mathematics/college/4qkqcnk3igy92c6v4o1zcmpf8xx2w6esq3.png)