Before we can determine the rectangular coordinate of the point, let's determine first its polar coordinates. For this, we need two things: radius and angle.
For the radius, we see that point R is 4 units away from the center.
For the angle, we see that it is 30° clockwise or 330° counterclockwise. See the illustration below:
Now that we know the radius is 4 units and the angle is 330° counterclockwise, let's now convert this to rectangular coordinates.
Use the formula below:
For x-coordinate, we have:
![x=rcos\theta](https://img.qammunity.org/2023/formulas/mathematics/college/4yticrje1ass722yb6z12lkaghpl260cvc.png)
![\begin{gathered} x=4cos330\degree \\ x=2√(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/j025njtumgrny20hux9xi4f6l9r0s0hsqe.png)
For the y-coordinate, we have:
![y=rsin\theta](https://img.qammunity.org/2023/formulas/mathematics/college/upbjftrym539nzqupeocp7rnbc02th6l7r.png)
![\begin{gathered} y=4sin330\degree \\ y=-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fsksnhbqgqb2kri1o80wwqr2dlxznucj5h.png)
Therefore, the rectangular coordinate of the given polar point is (2√3, -2). Option B.