Answer:
![\frac{33+11\sqrt[]{3}}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/82kqsqa3awqcs2gnzvlydqebwrmuxls213.png)
Step-by-step explanation:
The 30/60/90 triangle is given below
The perimeter of the triangle is
![11+x+y](https://img.qammunity.org/2023/formulas/mathematics/college/zd7e3rsr2gtp6s9wie539uffwdftafe19j.png)
therefore, we need to find the value of x and y.
The value of x is given by
![\cos 30=(x)/(11)](https://img.qammunity.org/2023/formulas/mathematics/college/bgnx8zxjmntecadscmtjme05aaqn4ox4hv.png)
multiplying both sides by 11 gives
![11\cos 30=x](https://img.qammunity.org/2023/formulas/mathematics/college/jvk98wk2a24beqtpn8ckts3dlngbeugtoe.png)
now
![\cos 30=\frac{\sqrt[]{3}}{2}](https://img.qammunity.org/2023/formulas/mathematics/high-school/4ebiugiygusoldhkp1taritnl4s5heakjf.png)
therefore.
![\boxed{x=11\cdot\frac{\sqrt[]{3}}{2}}](https://img.qammunity.org/2023/formulas/mathematics/college/fm5raf9zt4w5nuzq6ykdt8a8lf7jw1oudi.png)
Now we fidn the value of y.
The value of y is given by
![\sin 30=(y)/(11)](https://img.qammunity.org/2023/formulas/mathematics/college/7bl3nql5dffmpjhv8tb01msbp2f106lsgr.png)
multiplying both sides by 11 gives
![11\sin 30=y](https://img.qammunity.org/2023/formulas/mathematics/college/dgwe0yr8n1j13mpsj4zaodnj3j1kapx4mw.png)
Now since
![\sin 30=(1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/l5k6wpt8yjg6x2bqj428mrwkp5vcnm7jyi.png)
we have
![y=11\cdot(1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/i135e8ioyrjqllwbnxc383dh0c1dirvv41.png)
![\boxed{y=(11)/(2)}](https://img.qammunity.org/2023/formulas/mathematics/college/fb4y2qeqhb9wszvkixr63e9kl7agask0n8.png)
with the value of x and y in hand, wecan now find the perimeter.
![\text{perimeter = 11+x+y}](https://img.qammunity.org/2023/formulas/mathematics/college/r6k8gndo69pfvnxjjw908bhnqr21efmgte.png)
![perimeter=11+(11)/(2)+\frac{11\sqrt[]{3}}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/r5usezardl81fifyxrosllymwzmxn51vnf.png)
which simplifies to give
![perimeter=\frac{33+11\sqrt[]{3}}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/gso0hs7vwbbomleobmqnx8dnu8idgfa79p.png)
which is our answer!