We have two integers (x and y).
The largest integer (y) is 3 more than 5 times the smallest integer (x).
![y=3+5x](https://img.qammunity.org/2023/formulas/mathematics/college/zaomyasqgnjayhizxpiggzc7g081xmofc5.png)
Also, the smaller (x) substracted from the larger (y) is 31.
![y-x=31](https://img.qammunity.org/2023/formulas/mathematics/college/19x4oshh9d7k4ad3jlch0qh8d9aoyihjpe.png)
We can replace the value of y from the second equation in the first equation and solve:
![y-x=31\longrightarrow y=31+x](https://img.qammunity.org/2023/formulas/mathematics/college/vvkunq6sgf3ccq4yrgetfb3pg6dgvqo60k.png)
![\begin{gathered} y=3+5x=31+x \\ 3+5x=31+x \\ 5x-x=31-3 \\ 4x=28 \\ x=(28)/(4) \\ x=7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cbcyafima4z33nleba21u8et7fpl66ynu2.png)
Then, the value of y is:
![\begin{gathered} y=31+x \\ y=31+7=38 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4y0d5nwh45fhaakg93wl5k3j1zgue7pauz.png)
The integers are 7 and 38.