We can divide the figure in two regular polygons:
then, the area and perimeter of the rectangle are the following:
![\begin{gathered} A_r=22(10)=220 \\ P_r=2(22+10)=2(32)=64 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/knzjeb87yfyfdigby0dz3qa9y1mxhtq768.png)
then, the area and perimeter of the semicircle are the following:
![\begin{gathered} A_c=((3.1416)(5)^2)/(2)=(78.54)/(2)=39.27 \\ P_c=((3.1416)(10))/(2)=15.71 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6d1d6gziwuws0hlyl3grc2zc6x5n1ixpil.png)
then, if we add the areas and the perimeters, we get:
![\begin{gathered} A_t=A_r+A_c=220+39.27=259.27 \\ P_t=P_r+P_c=64+15.71=79.71 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i3y3wujhx70alukl2mubcr2i2xhkiaht3e.png)
therefore, the area is 259.27 squared units and the perimeter is 79.71 units