Using an Exponential regression Calculator
we have that
Give me a few minutes to complete the regression
![y=30,056.97\left(1.06\right)^x](https://img.qammunity.org/2023/formulas/mathematics/college/2gze22ra1pzymdrnun9gghe35lsa71b4k3.png)
so
For x=25 years
substitute
![\begin{gathered} y=30,056.97\left(1.06\right)^(25) \\ y=129,000 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/v91q0xx2zye6y03alb5gmvfo3ylc7entxp.png)
Part 2
Using an exponential equation of the form
![y=a(e)^(bx)](https://img.qammunity.org/2023/formulas/mathematics/college/g8l3ubfamvrpomiuh1ajbeqrk36c0i8fcp.png)
Using an Exponential regression Calculator
we have that
Give me a few minutes to complete the regression
the equation is
![y=30,056.97(e)^(0.06x)](https://img.qammunity.org/2023/formulas/mathematics/college/zcngx1gvjfykcgcefbwihcv76tkmx3qxq5.png)
For x=25 years
substitute
![\begin{gathered} y=30,056.97(e)^(0.06(25)) \\ y=134,706 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4knqpc97kopjh8x72xlrsliw5aj9svwjss.png)
The answer is option B