79.2k views
2 votes
A principal of $1500 is invested at 9% interest, compounded annually. How many years will it take to accumulate $4000 or more in the account? (Use the calculator provided if necessary.)Write the smallest possible whole number answer.

1 Answer

0 votes

Step-by-step explanation

The equation of the compounded interest is the following:


Interest\text{ Earned=Principal\lparen1+}(r)/(n)\text{\rparen}^(nt)

Where P=Principal=1500, r=rate=0.09, n = number of times interest rate is compounded = 1, t=time=unknown value

Plugging in the terms into the expression:


4000=1500(1+(0.09)/(1))^t


\mathrm{Switch\:sides}


1500\left(1+(0.09)/(1)\right)^t=4000


\mathrm{Divide\:both\:sides\:by\:}1500


(1500\left(1+(0.09)/(1)\right)^t)/(1500)=(4000)/(1500)


\mathrm{Simplify}


\left(1+(0.09)/(1)\right)^t=(8)/(3)


\mathrm{If\:}f\left(x\right)=g\left(x\right)\mathrm{,\:then\:}\ln \left(f\left(x\right)\right)=\ln \left(g\left(x\right)\right)


\ln \left(\left(1+(0.09)/(1)\right)^t\right)=\ln \left((8)/(3)\right)

Apply log rule:


t\ln \left(1+(0.09)/(1)\right)=\ln \left((8)/(3)\right)


\mathrm{Divide\:both\:sides\:by\:}\ln \left(1.09\right)


(t\ln \left(1.09\right))/(\ln \left(1.09\right))=(\ln \left((8)/(3)\right))/(\ln \left(1.09\right))

Simplify:


t=(\ln \left((8)/(3)\right))/(\ln \left(1.09\right))

Expressing as a decimal:


t=11.38

In conclusion, we will need 11 years to accumulate $4,000

User LunaticJape
by
7.6k points