Let x be the pounds of 45% copper alloy
Let y be the pounds of 69% copper alloy
To get the amount of copper in a alloy you multiply the pounds of it by the % of copper in decimal form.
Use 0.45x and 0.69y to get a alloy of 42*0.66 (42 pounds containig 66% copper)
![\begin{gathered} 0.45x+0.69y=42\cdot0.66 \\ \\ 0.45x+0.69y=27.72 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4h7w3h5muf04us258pwkvq6x3shzcr4k5k.png)
x and y needs to sum the pounds in the last alloy:
![x+y=42](https://img.qammunity.org/2023/formulas/mathematics/college/vi6y5dgo2aotw9z66jlbpm3fjko90y0h1i.png)
Use the next system of equations to solve the given problem:
![\begin{gathered} 0.45x+0.69y=27.72 \\ x+y=42 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ux6guloz56svs4mfliv4hnqgn4gjnsgp87.png)
1. Solve y in the second equation:
![y=42-x](https://img.qammunity.org/2023/formulas/mathematics/college/o0doxusrx43bp8zwhem1z9ro1mg3npweev.png)
2. Substitute the y in the first equation by the value you get in first step:
![0.45x+0.69(42-x)=27.72](https://img.qammunity.org/2023/formulas/mathematics/college/uzgyjx758q8roqi7bk7zrrvstza7i234n5.png)
3. Solve x:
![\begin{gathered} 0.45x+28.98-0.69x=27.72 \\ -0.24x+28.98=27.72 \\ -0.24x=27.72-28.98 \\ -0.24x=-1.26 \\ x=(-1.26)/(-0.24) \\ \\ x=5.25 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qwkb3am0bya73vx1z0pcltwbjobfmflban.png)
4. Use the value of x to solve y:
![\begin{gathered} y=42-x \\ y=42-5.25 \\ y=36.75 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9vp0q1mla8ekck41utemxwxrcp435ccpbu.png)
Solution: x=5.25, y=36.75
Then, the metallurgist must use 5.25 pounds of the alloy containing 45% copper and 36.75 pounds of the alloy containing 69% copper