51,385 views
4 votes
4 votes
Write the following expression in terms sinθ or cosθ, and then simplify if possible. cscθ − cotθcos(-θ)

User Gromgull
by
3.1k points

1 Answer

4 votes
4 votes

Given the expression:


\csc \theta-\cot \theta\cos (-\theta)

Let's write the expression in terms of sinθ o cosθ.

To simplify, apply trigonometric identities.


\begin{gathered} \csc (\theta)=(1)/(\sin\theta) \\ \\ \text{cot}\theta=(\cos \theta)/(\sin \theta) \end{gathered}

Thus, we have:


\begin{gathered} \csc \theta-\cot \theta\cos (-\theta) \\ \\ =(1)/(\sin\theta)-(\cos\theta)/(\sin\theta)\cdot\cos (-\theta) \end{gathered}

Solving further:

Since cos(-θ) is an even function, rewrite it as cos(θ)


\begin{gathered} (1)/(\sin\theta)-(\cos\theta)/(\sin\theta)\cdot\cos \theta \\ \\ (1)/(\sin\theta)-(\cos \theta\cdot\cos \theta)/(\sin \theta) \\ \\ (1)/(\sin\theta)-(\cos ^2\theta)/(\sin \theta) \\ \\ =(1-\cos ^2\theta)/(\sin \theta) \end{gathered}

Apply Pythagorean Identity:


\begin{gathered} (\sin^2\theta)/(\sin\theta) \\ \\ =(\sin \theta\cdot\sin \theta)/(\sin \theta) \\ \\ =\sin \theta \end{gathered}

ANSWER:


\sin \theta

User Vijayashankard
by
3.0k points