1.3k views
1 vote
Solve by substitution.
xy = 5 \\ {5x}^(2) + {y}^(2)

1 Answer

6 votes

we have the system of equations


\begin{gathered} xy=5 \\ y=(5)/(x)\text{ ----> equation 1} \\ 5x^2+y^2=30\text{ ----> equation 2} \\ \end{gathered}

Solve by substitution

substitute equation 1 in equation 2


5x^2+((5)/(x))^2=30

solve for x


\begin{gathered} 5x^2+(25)/(x^2)=30 \\ (5x^4+25)/(x^2)=30 \\ \\ 5x^4+25=30x^2 \\ 5x^4-30x^2+25=0 \\ \end{gathered}

Let

change of variable


\begin{gathered} u^2=x^4 \\ u=x^2 \end{gathered}

substitute


\begin{gathered} 5x^4-30x^2+25=0 \\ 5u^2-30u+25=0 \end{gathered}

Solve the quadratic equation

using the formula

a=5

b=-30

c=25

substitute


u=(-(-30)\pm√(-30^2-4(5)(25)))/(2(5))
u=(30\pm20)/(10)

The values of u are

u=5 and u=1

Now solve for x

Remember that


\begin{gathered} u=x^(2) \\ For\text{ u=1} \\ x^2=1 \\ x_1=1 \\ x_2=-1 \\ For\text{ u=5} \\ x^2=5 \\ x_3=√(5) \\ x_4=-√(5) \end{gathered}

Find out the values of y

For each value of x find out the value of y

Remember that


\begin{equation*} y=(5)/(x)\text{ } \end{equation*}

For x_1


\begin{gathered} x_1=1 \\ y_1=(5)/(1)=5 \end{gathered}

The first solution is the point (1,5)

For x_2


\begin{gathered} x_2=-1 \\ y_2=(5)/(-1)\text{ =-5} \end{gathered}

The second solution is the point (-1,-5)

For x_3


\begin{gathered} x_3=√(5) \\ y_3=(5)/(√(5))\text{ } \\ \\ y_3=√(5) \\ The\text{ third solution is the point \lparen}√(5),√(5)) \end{gathered}

For x_4


\begin{gathered} x_4=-√(5) \\ y_4=(5)/(-√(5))\text{ } \\ \\ y_4=-√(5) \\ The\text{ fourth solution is the point }(-√(5),-√(5)) \end{gathered}

User Nicolas Gimelli
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories