![y=ab^x](https://img.qammunity.org/2023/formulas/mathematics/high-school/hye5rg1h8wj3ohgdt4j1vpepdhoym0w9ex.png)
In a equation in the exponential general form you have:
a is the y-intercetp: the value of the function when x is 0)
For the given function the y intercept is (0,5), then
a=5
![y=5b^x](https://img.qammunity.org/2023/formulas/mathematics/college/gvns01gfej9pmy7mk61t7u6jojlspopz8m.png)
Use the given point (2,45) to find the value of b
y=45
x=2
![45=5b^2](https://img.qammunity.org/2023/formulas/mathematics/college/18lc8n7zvgs516jrwzjzvghdt1fugom9fe.png)
Divide both sides of the equation into 5:
![\begin{gathered} (45)/(5)=(5)/(5)b^2 \\ \\ 9=b^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/er8ftse5er68ngzugdq922vvpjbuv5v8dt.png)
Find the square root in both sides of the equation:
![\begin{gathered} \sqrt[]{9}=\sqrt[]{b^2} \\ \\ 3=b \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zpand5l1oc0unnz544khhp20gv114n9i77.png)
Then, for the given function you have the next equation:
![y=5\cdot3^x](https://img.qammunity.org/2023/formulas/mathematics/high-school/p5bcmcev3e7xoxq8mzjxittvglghdz5ofv.png)
__________________________________
To find the value of the function when x=4 use the equation above, substitute the x for 4 and evaluate:
![\begin{gathered} y=5\cdot3^4 \\ y=5\cdot81 \\ y=405 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hlk4bs8dgh4oxq4mirhqch6e0b42odnv7j.png)
Then, when x=4 the value of the function is 405