Answer:
h
( - ∞, 12/7 ]
Step-by-step explanation:
To solve the inequality we need to subtract 1 on both sides as:
![\begin{gathered} -7h+1\ge-11 \\ -7h+1-1\ge-11-1 \\ -7h\ge-12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m6e15vmqunb8se6yci37prkvn2wqjzkwnl.png)
Now, dividing by -7, we get:
Remember that when we multiply or divide by a negative number, the sign of the inequality change, so:
![\begin{gathered} (-7h)/(-7)\leq(-12)/(-7) \\ h\leq(12)/(7) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qxl0erbf1chyvy6gixb902f7tk87x8chqw.png)
Therefore, the answer in set-builder notation is:
![\lbrace h|h\leq(12)/(7)\rbrace](https://img.qammunity.org/2023/formulas/mathematics/college/th2qsqd3mrln0o7m40rb4tohjet7585txn.png)
And the answer in interval notation is:
![(-\infty,(12)/(7)\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/rjj3wady1e4rp2l1rdndnxvp4ny11rfg52.png)
Finally, The answer in a number line is: