Step-by-step explanation
If we have a 45°- 45°- 90° triangle, two or the sides have the same length and the hypotenuse can be calculated using the Pythagorean Theorem as:
![\text{Hypotenuse}=\sqrt[]{x^2+x^2}](https://img.qammunity.org/2023/formulas/mathematics/college/lu7avz0nmkshht40vjr6h84s52f3a6e9s9.png)
Where x is the length of the sides. So, replacing x by 14, we get:
![\begin{gathered} \text{Hypotenuse}=\sqrt[]{14^2+14^2} \\ \text{Hypotenuse}=\sqrt[]{2(196^{})} \\ \text{Hypotenuse}=\sqrt[]{196}\cdot\sqrt[]{2} \\ \text{Hypotenuse}=14\sqrt[]{2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/terkg31y7wovo6qi118zql9fa3x2qq4hbg.png)
Therefore, the answer is: 14√2
Answer: 14√2