To find the z-score we use the following formula:
![z-score=(x-\mu)/(\sigma)](https://img.qammunity.org/2023/formulas/mathematics/college/p1eemy24mssu4zm37yrt1u7qw9x674ltzs.png)
Where x is the data point or the element, in this case:
![x=57](https://img.qammunity.org/2023/formulas/mathematics/college/40h1jq6lwvh7s5qmk1su4xkqwfwwmjdj78.png)
μ is the mean:
![\mu=68.42](https://img.qammunity.org/2023/formulas/mathematics/college/gypgk25wa4r6svzmycx01qnvq57930ucbg.png)
and σ is the standard deviation:
![\sigma=7.91](https://img.qammunity.org/2023/formulas/mathematics/college/4zvzd52y463xfejl0if5y78eqrpu5jzuwn.png)
--> Substituting these three values into the z-score formula
![z-\text{score}=(57-68.42)/(7.91)](https://img.qammunity.org/2023/formulas/mathematics/college/xsr4u9hbkx1vsj6yx9t9jho108rjg7lbla.png)
Solving the operations:
![\begin{gathered} z-\text{score}=(-11.72)/(7.91) \\ \\ z-\text{score}=-1.48167 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/oqfkltszmg3u8lftidjge165bxw8cfhpu8.png)
Finally, we need to round to the nearest hundredth (2 decimal places):
![z-\text{score}=-1.48](https://img.qammunity.org/2023/formulas/mathematics/college/7v4zk6yduulvv6m8nheu5g32ocr28r5296.png)
Answer: -1.48