WSimpe are given the following trigonometric identities:
Part A.
![cos^2\theta=sin^2\theta-1](https://img.qammunity.org/2023/formulas/mathematics/college/ng2rcde36ewwfeymy5c2bchfhqiwd9w5g4.png)
This is not a trigonometric identity. The true identity is:
![cos^2\theta+sin^2\theta=1](https://img.qammunity.org/2023/formulas/mathematics/college/wd587eyct6qoidg8wcwgsjk9kisl9gpdvs.png)
Part B
![sin\theta=(1)/(csc\theta)](https://img.qammunity.org/2023/formulas/mathematics/college/abosnh1tq94f3en6jeqk5fc3n6y767185g.png)
This is a trigonometric identity by definition.
Part C.
![sec\theta=(1)/(cot\theta)](https://img.qammunity.org/2023/formulas/mathematics/college/9mtfd02d7ewon03lnc7zsqnf87l52ja1ff.png)
This is not a trigonometric identity by definition
Part D.
![cot\theta=(cos\theta)/(sin\theta)](https://img.qammunity.org/2023/formulas/mathematics/college/grm89yowv29uni52n2pguc3d51ngsgquub.png)
This can be proven to be true if we take the following identity:
![cot\theta=(1)/(tan\theta)](https://img.qammunity.org/2023/formulas/mathematics/college/jul066zy19amgwjv7v981aj9jxboy8elto.png)
Since
![tan\theta=(sin\theta)/(cos\theta)](https://img.qammunity.org/2023/formulas/mathematics/college/23fv1aroz2vcsg1a7sbh7tq0zv195a4ctm.png)
Substituting in the identity for cot we get:
![cot\theta=(1)/((sin\theta)/(cos\theta))](https://img.qammunity.org/2023/formulas/mathematics/college/atq1ygeyke6pzox97kbbljqf50b5yj4y9v.png)
Simplifying:
![cot\theta=(cos\theta)/(sin\theta)](https://img.qammunity.org/2023/formulas/mathematics/college/grm89yowv29uni52n2pguc3d51ngsgquub.png)
Therefore, the identity is true.
Part W.
![1+cot^2\theta=csc^2\theta](https://img.qammunity.org/2023/formulas/mathematics/college/7t0koxs5kuccdqgy9xd9uzgomnykz1lgbz.png)
To prove this identity we will use the following identity:
![sin^2\theta+cos^2\theta=1](https://img.qammunity.org/2023/formulas/mathematics/college/4l3jle1tms393h00pwlwcixxjikhkyvr92.png)
Now, we divide both sides by the square of the sine:
![(sin^2\theta)/(sin^2\theta)+(cos^2\theta)/(sin^2\theta)=(1)/(sin^2\theta)](https://img.qammunity.org/2023/formulas/mathematics/college/cvbldfxbqo34y7iud3ygvu49m0hst5pk3k.png)
The first term is 1:
![1+(cos^(2)\theta)/(s\imaginaryI n^(2)\theta)=(1)/(s\imaginaryI n^(2)\theta)](https://img.qammunity.org/2023/formulas/mathematics/college/36wi3tdcz34mwbqqhjd4kyehfqvx2or431.png)
We can use the identity in part D for the second term:
![1+cot^2\theta=(1)/(sin^2\theta)](https://img.qammunity.org/2023/formulas/mathematics/college/nn1scs6temmopgguug5612ky5faakmuos1.png)
For the last term, we use identity in part B:
![1+cot^2\theta=csc^2\theta](https://img.qammunity.org/2023/formulas/mathematics/college/7t0koxs5kuccdqgy9xd9uzgomnykz1lgbz.png)
Therefore, the identity is true.