Since the given function is
![f(x)=7x^4-17x^2-12](https://img.qammunity.org/2023/formulas/mathematics/college/er7v0t6z9h8nv8pd2wlvuiv6yzrcgl94g3.png)
Take 7 as a common factor
![f(x)=7(x^4-(17)/(7)x^2-(12)/(7))](https://img.qammunity.org/2023/formulas/mathematics/college/sh438rde6e4f595i2u8sfg4563rn15uzjg.png)
Now let us make the trinomial completing square
Divide the middle term by 2, then square it
![\begin{gathered} ((17)/(7))/(2)x=(17)/(14) \\ ((17)/(14))^2=(289)/(196) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ce9nbrpwsvhr7cyv8swat37umgiy84vllg.png)
So we will add and subtract this value
![\begin{gathered} x^4-(17)/(7)x-12=x^4-(17)/(7)x^2+(289)/(196)-(289)/(196)-12 \\ =(x^4-(17)/(7)x^2+(289)/(196))-(2641)/(196) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ogm5dngbw30lnnlgo1ci36cw3ae2xxtc0y.png)
The trinomial is the square of
![(x^4-(17)/(7)x^2+(289)/(196))=(x^2-(17)/(14))^2](https://img.qammunity.org/2023/formulas/mathematics/college/57swh4o8bjioj43s60gha7d6suwvx2g3g7.png)
Then the new f(x) is
![f(x)=7\lbrack(x^2-(17)/(14))^2-(2641)/(196)\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/2woqgsli3r8saufih79ojcwl49t8mxuxzp.png)
Now we can solve it by equating f(x) by 0
![\begin{gathered} f(x)=0 \\ 7\lbrack(x^2-(17)/(14))^2-(2641)/(196)\rbrack=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cvlgmaiadu7v6r4rf5n7a4ehl4z9z3texb.png)
Divide both sides by 7 and add 2641/196 to both sides
![\begin{gathered} (x^2-(17)/(14))^2-(2641)/(196)+(2641)/(196)=0+(2641)/(196) \\ (x^2-(17)/(14))^2=(2641)/(196) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/knxnqabl3gpxlsk3eeloey7wzeqv1bq6q6.png)
Take a square root to both sides
![(x^2-(17)/(14))=\pm\sqrt[]{(2641)/(196)}](https://img.qammunity.org/2023/formulas/mathematics/college/21jupzfes8xiy2tb83f6qf42fech0qaxds.png)
Add 17/14 to both sides
![\begin{gathered} x^2-(17)/(14)+(17)/(14)=\pm\sqrt[]{(2641)/(196)}+(17)/(14) \\ x^2=\pm4.885047188 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/iovloohzbvo0c6xy9gwvr8ezxanmg3kd1f.png)
We will cancel the -ve value because no square root of -ve values, then
Take a square root for 4.885047188 to find x
![\begin{gathered} x=\pm\sqrt[]{4.885047188} \\ x=\pm2.210214286 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/aqrss286g6iavz07i5wftg5comjoo46klg.png)