Given
-2-8-32+...-32768
Find
Write the sum using the sigma notation
Step-by-step explanation
we have given - 2 - 8 - 32 + ... - 32768
here a = -2
common ratio = -8/-2 = 4
nth term = -32768
now from the nth term formula we find the number of terms
![\begin{gathered} a_n=ar^(n-1) \\ -32768=-2(4)^(n-1) \\ 16384=(4)^(n-1) \\ 4^7=(4)^(n-1) \\ 7=n-1 \\ n=8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/b6bajuxnn7r4sc628jjg9x83vqbd9sumhb.png)
so , sum =
![\sum_{i\mathop{=}1}^8a_ir^(i-1)=a_1r^(1-1)+a_2r^(2-1)+a_3r^(3-1)+.........+a_8r^(8-1)](https://img.qammunity.org/2023/formulas/mathematics/college/rv38uy5mleqkttye4p7ub171ralvcraxoa.png)
sum of geometric progression is given by
![\begin{gathered} S_8=(a(r^n-1))/(r-1) \\ \\ S_8=(-2(4^8-1))/(8-1) \\ \\ S_8=(-2(32768-1))/(7) \\ S_8=-43,690 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7xzax3o8c3ngnn9utyaa0eb0h78tfjznea.png)
Final Answer
![\sum_{i\mathop{=}1}^8a_ir^(i-1)=-43,690](https://img.qammunity.org/2023/formulas/mathematics/college/wrkcrj20phy3wtwm1rgmgzgyju5p2ccadh.png)