We are given the following division problem
![(m^8-1)/(m-1)](https://img.qammunity.org/2023/formulas/mathematics/college/ejrycd9mr176vn810ga9mepelxtw4ogmum.png)
We need to factor out the numerator first
![m^8-1=(m^4)^2-1^2](https://img.qammunity.org/2023/formulas/mathematics/college/r9solzprb8o1456z2o310n0la16zpizr9x.png)
Apply the difference of squares formula
![(m^4)^2-1^2=(m^4+1)(m^4-1)](https://img.qammunity.org/2023/formulas/mathematics/college/h6a6nun5wi9a2mqatbluttoutzwqap53lt.png)
Again, factor out the term on the right side
![m^4-1=(m^2)^2-1^2](https://img.qammunity.org/2023/formulas/mathematics/college/c6kn835u1fsouycwmazc9vqflxwewgtr7f.png)
Apply the difference of squares formula
![(m^2)^2-1^2=(m^2+1)(m^2-1)](https://img.qammunity.org/2023/formulas/mathematics/college/artrfiqk20skvvgr4i8fvkgthku8q1ks8x.png)
Again, factor out the term on the right side
![m^2-1=(m)^2-1^2](https://img.qammunity.org/2023/formulas/mathematics/college/g9pbzwrmcqil28i3bjheor9kf1eu17wf9q.png)
Apply the difference of squares formula
![(m)^2-1^2=(m+1)(m-1)_{}](https://img.qammunity.org/2023/formulas/mathematics/college/a8tydbjfzj2l9x1tggia3djo12y91shv0h.png)
Finally, the expression becomes
![(m^8-1)/(m-1)=((m^4+1)(m^2+1)(m+1)(m-1))/(m-1)](https://img.qammunity.org/2023/formulas/mathematics/college/ggp3ofta24dh8n12oigk9lalmpau8zd83c.png)
(m-1) cancels out
![(m^8-1)/(m-1)=(m^4+1)(m^2+1)(m+1)](https://img.qammunity.org/2023/formulas/mathematics/college/fsbyaoxkuui6dj81xcehphkpapzdsp20hg.png)
Therefore, the quotient is
![(m^4+1)(m^2+1)(m+1)](https://img.qammunity.org/2023/formulas/mathematics/college/5qo0excny08ohy0xzfre6ia1y78i8f12vs.png)
Or in simplified form
![m^7+m^6+m^5+m^4+m^3+m^2+m+1](https://img.qammunity.org/2023/formulas/mathematics/college/6e2b83bsme85fjz1vskj8zvfnimrajcmv6.png)