163k views
5 votes
Solve the following pair of simultaneous equations using the matrix method. 4x + 3y = 0 x + 2y = 5 [3] Total: 5 marks

1 Answer

3 votes

we have the system of equations

4x+3y=0

x+2y=5

Convert to matrix form


A\cdot X=B

matrix A


A=\begin{bmatrix}{4} & {3} \\ {1} & {2}\end{bmatrix}

matrix X


X=\begin{bmatrix}{x} & {} \\ {y} & {}\end{bmatrix}

matrix B


B=\begin{bmatrix}{0} & {} \\ {5} & {}\end{bmatrix}

substitute


\begin{bmatrix}{4} & {3} \\ {1} & {2}\end{bmatrix}\cdot\begin{bmatrix}{x} & {} \\ {y} & {}\end{bmatrix}=\begin{bmatrix}{0} & {} \\ {5} & {}\end{bmatrix}

Find out the determinant of matrix A

D=4*2-3*1

D=5

Find out the determinant Dx


Dx=\begin{bmatrix}{0} & {3} \\ {5} & {2}\end{bmatrix}=-15

Find out the determinant Dy


Dy=\begin{bmatrix}{4} & {0} \\ {1} & {5}\end{bmatrix}=20

Find out the value of x

x=Dx/D

x=-15/5=-3

Find out the value of y

y=Dy/D

y=20/5=4

therefore

The solution is (-3,4)

User Alexandr Viniychuk
by
3.9k points