![\text{Let x the first number and y, the second number}](https://img.qammunity.org/2023/formulas/mathematics/high-school/y1n9u5txfyhtyt2u7w50zaotjmu7wzdc4g.png)
Mathematical representation of statement 1 is:
![3x+y=21](https://img.qammunity.org/2023/formulas/mathematics/college/dykp1c97chz0psha0mi54tgpcgfcsy5c9w.png)
Mathematical representation of statement 2 is:
![x-2y=-14](https://img.qammunity.org/2023/formulas/mathematics/college/mks6gc6pjzb5g6dluhax6ywjt7lrrtk7id.png)
Solving the two(2) equations simultaneously by the method of elimination, we have:
![\begin{gathered} 3x+y=21\text{ -------}*2 \\ x-2y=-14 \\ ----------------------- \\ 6x+2y=42 \\ x-2y=-14 \\ ----------------------- \\ 6x+x=42-14 \\ 7x=28 \\ x=(28)/(7) \\ x=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/iyptf96rrokt4roytwpl2xhc8fd0yn15c1.png)
Substitute for x = 4 into any of the two(2) equations:
![\begin{gathered} \text{from eqn i}i) \\ x-2y=-14 \\ 4-2y=-14 \\ -2y=-14-4 \\ -2y=-18 \\ y=-(18)/(-2) \\ y=9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/z4k8tnviiwuxabwzosc99kbkk6fwjg59uz.png)
Hence, the numbers are 4 and 9