216k views
3 votes
Evaluating an exponential function with base e that models a real-world situation

Evaluating an exponential function with base e that models a real-world situation-example-1

1 Answer

4 votes

a) 19 m/s

b) 28 m/s

Step-by-step explanation:
\begin{gathered} \text{Given function:} \\ v(t)\text{ = 51(}1-e^(-0.16t)) \\ \\ We\text{ find the values of v(t) with the given t values} \end{gathered}

when t = 3 seconds


\begin{gathered} v(t)\text{ = 51(}1-e^(-0.16(3))) \\ v(t)\text{ = 51(}1-e^(-0.16(3))) \\ v(t)\text{ =}51(1\text{ - 0.6188)} \\ v(t)\text{ = 19.4420 m/s} \\ \\ To\text{ the nearest whole number, v(t) = 19 m/s} \end{gathered}

when t = 5 seconds


\begin{gathered} v(t)\text{ = 51(}1-e^(-0.16(5))) \\ v(t)\text{ = 51(}1-0.4493) \\ v(t)\text{ = 28.0842 m/s} \\ \\ To\text{ the nearest whole number, v(t) = 28 m/s} \end{gathered}

User TechDo
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories