f(x)= 5x² - 4 and g(x)=5 - 3x²
a) (fog)(x) = f(g(x))
= f(5-3x²)
=5(5-3x²)² - 4
Hence, (fog)(x) = 5(5-3x²) - 4
To find (fog)(4) simply substitute x=4 in the above
(fog)(4) = 5[5-3(4)²]² - 4
= 5[ 5-3(16)]² - 4
=5[5 - 48]² - 4
= 5[-43]² - 4
=9245 - 4
=9241
b) (gof)(2)
First find (g o f )(x)
(gof)(x)= g(f(x))
=g(5x² - 4)
=5 - 3(5x² - 4)²
Hence,
(gof)(x) = 5 - 3(5x² - 4)²
Substitute x=2 in the above to get (gof)(2)
(gof)(x) = 5 - 3[5(2)² - 4]²
= 5 - 3[20 - 4 ]²
= 5 - 3(16)²
=5 -768
=-763
c)(fof)(1)
To find the above, we need to first find f[f(x)]
f[f(x)] = f(5x² - 4)
=5(5x² - 4)² - 4
(fof)(x)=5(5x² - 4)² - 4
Substitute x=1 to get (fof)(1)
(fof)(1)=5[5(1)² - 4]² - 4
=5[5 - 4]² - 4
=5(1)² - 4
= 5 - 4
=1
(d) (gog)(0)
First find (gog)(x)
(gog)(x) = g[g(x)]
=g[5 - 3x² ]
=5- 3 [5-3x²]²
(gog)(x) =5- 3 [5-3x²]²
substitute x=0 in the above to get (gog)(0)
(gog)(0) =5 - 3{5-3(0)²]²
=5 - 3[5-0]²
=5 - 3(5)²
=5 - 75
=-70