To find the restricted values for a rational function we need to determine for which values of x the denominator is zero, this values are the restricted values. This comes from the fact that we can't divide by zero.
With this in mind, for the expression:
![(6x)/(2x^2-5x)](https://img.qammunity.org/2023/formulas/mathematics/college/vpzob17bmj83rf9fbo3viw8z5e5d1d4ewm.png)
we need to find when:
![2x^2-5x=0](https://img.qammunity.org/2023/formulas/mathematics/college/ae83lbikdzrei4e24wr9beuiksydn5s0hk.png)
Solving this equation we have that:
![\begin{gathered} 2x^2-5x=0 \\ x(2x-5)=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ho6q44t2jvztmuyw2gqxjwn5899wjhadsm.png)
the last equivalent expression implies that:
![\begin{gathered} x=0 \\ or \\ 2x-5=0 \\ 2x=5 \\ x=(5)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/eaagy8ixd9ofp4fa0lk0x1kljf3kmfayyq.png)
Therefore the restricted values of x are 0 and 5/2