217k views
3 votes
Y = (5x ^ 2 + 6cos(x)) ^ 7 Find 1d * (dy)/(dx)

Y = (5x ^ 2 + 6cos(x)) ^ 7 Find 1d * (dy)/(dx)-example-1
User Pyfisch
by
4.6k points

1 Answer

5 votes
Answer:
(dy)/(dx)=7(5x^2+6cosx)^6(10x-6s\imaginaryI nx)Step-by-step explanation:

The given equation is:


y=(5x^2+6cosx)^7

This will be solved using the chain rule method

Let u = 5x² + 6cosx


(du)/(dx)=10x-6sinx
\begin{gathered} y=u^7 \\ \\ (dy)/(du)=7u^6 \end{gathered}
(dy)/(dx)=(dy)/(du)*(du)/(dx)
\begin{gathered} (dy)/(dx)=7u^6*(10x-6sinx) \\ \\ (dy)/(dx)=7(5x^2+6cosx)^6(10x-6sinx) \end{gathered}

User Michael Hunziker
by
4.4k points