ODD Function : a function such that f (−x) =−f (x) where the sign is reversed but the absolute value remains the same if the sign of the independent variable is reversed.
A) y = secx
Put x = -x
then y = 1/cosx
y = 1/cos(-x)
y = 1/cosx
y = secx
Thus, secx is the even function
B) y = sinx
SUbstitute x = -x
y = sin(-x)
y = -sinx
Thus, y = sinx is the odd function
C) y = cotx
Put x = -x
then y = cot(-x)
y = -cotx
Thus, y = cotx is the odd function
D) y = cscx
Put x = -x
Then. y = csc(-x)
y = -cscx
Answer :
B. y = sin x
C. y = cot x
D. y = csc x